Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.An accurate28P(p,γ)29S reaction rate is crucial to defining the nucleosynthesis products of explosive hydrogen burning in ONe novae. Using the recently released nuclear mass of29S, together with a shell model and a direct capture calculation, we reanalyzed the28P(p,γ)29S thermonuclear reaction rate and its astrophysical implication. Aims.We focus on improving the astrophysical rate for28P(p,γ)29S based on the newest nuclear mass data. Our goal is to explore the impact of the new rate and associated uncertainties on the nova nucleosynthesis. Methods.We evaluated this reaction rate via the sum of the isolated resonance contribution instead of the previously used Hauser-Feshbach statistical model. The corresponding rate uncertainty at different energies was derived using a Monte Carlo method. Nova nucleosynthesis is computed with the 1D hydrodynamic code SHIVA. Results.The contribution from the capture on the first excited state at 105.64 keV in28P is taken into account for the first time. We find that the capture rate on the first excited state in28P is up to more than 12 times larger than the ground-state capture rate in the temperature region of 2.5 × 107K to 4 × 108K, resulting in the total28P(p,γ)29S reaction rate being enhanced by a factor of up to 1.4 at ~1 × 109K. In addition, the rate uncertainty has been quantified for the first time. It is found that the new rate is smaller than the previous statistical model rates, but it still agrees with them within uncertainties for nova temperatures. The statistical model appears to be roughly valid for the rate estimation of this reaction in the nova nucleosynthesis scenario. Using the 1D hydrodynamic code SHIVA, we performed the nucleosynthesis calculations in a nova explosion to investigate the impact of the new rates of28P(p,γ)29S. Our calculations show that the nova abundance pattern is only marginally affected if we use our new rates with respect to the same simulations but statistical model rates. Finally, the isotopes whose abundance is most influenced by the present28P(p,γ)29S uncertainty are28Si,33,34S,35,37Cl, and36Ar, with relative abundance changes at the level of only 3% to 4%.more » « less
-
ABSTRACT Massive stars are crucial to galactic chemical evolution for elements heavier than iron. Their contribution at early times in the evolution of the Universe, however, is unclear due to poorly constrained nuclear reaction rates. The competing 17O(α, γ)21Ne and 17O(α, n)20Ne reactions strongly impact weak s-process yields from rotating massive stars at low metallicities. Abundant 16O absorbs neutrons, removing flux from the s-process, and producing 17O. The 17O(α, n)20Ne reaction releases neutrons, allowing continued s-process nucleosynthesis, if the 17O(α, γ)21Ne reaction is sufficiently weak. While published rates are available, they are based on limited indirect experimental data for the relevant temperatures and, more importantly, no uncertainties are provided. The available nuclear physics has been evaluated, and combined with data from a new study of astrophysically relevant 21Ne states using the 20Ne(d, p)21Ne reaction. Constraints are placed on the ratio of the (α, n)/(α, γ) reaction rates with uncertainties on the rates provided for the first time. The new rates favour the (α, n) reaction and suggest that the weak s-process in rotating low-metallicity stars is likely to continue up to barium and, within the computed uncertainties, even to lead.more » « less
An official website of the United States government
